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1 Introduction and historical background

1.1 Introduction

This is a short presentation of the basic theory and procedures for application of a methatkfor mo
ling dynamical systems called Statistical Energy Analysis (SEA) [1], [2]. The name SEA-was es
tablished in the earl1960's.

i Statisticalmeans that the systems being studied are members of populations of similar design
having distributions of their dynamical parameters.

1 Energyis the primary variable of interest. Dynamic variables such as displacement, pressure, etc
are derived from the energy of vibration.

1 Analysisis used to say that SEA is a framework of dynamic analysis, rather than a particular
technique.

Statistical approaches in dynamical analysis have a long history. It is emphasised again that the
important feature of SEA is the description of the vibrating system as a member of a statistical
population or ensemble. The dynamic loads and responses may be random or not.

Traditional analyses of the mechanical vibration of systems such as machines@uockesthave

been focused on the lower few resonant modes. These modes at low frequencies tend to have large
displacement response (large strains) and are thededeslifor prediction of struaal fatigue.

Higher order mode vibration of walls, floorsghicle bodies etc. has been of interest for a long time

for sound radiation and propagation. Large, lightweight aerospace and vehicle structures, with high
frequency broadband loads makes higher order modal analysis interesting also dastimg

strucural fatigue and equipment failure not only noise.

Resonance frequencies and mode shapes of higher order modes show great sensitivity to small
variations of geometry, construction and material properties. Modal overlap results in high variability
of frequency response functions (FRFs) for such variations [3]. Also, FEM/BEM computer programs
used for calculating mode shapes and frequencies are rather inaccurate for the higher order modes. .
statistical model of the modal parameters is therefore naturapgndpriate when the number of

modes in the frequency intervals considdredomesigh.

Design engineers have to make dynamic load and response estimates at early stages of developmer
when structural detail is not known or decided. These estimatesadeetmqualify the design

including any isolation, damping, or structural configurations necessary to reduce structural or
acoustic response. Highly detailed modelling requires specific knowledge of shape, construction,
loading functions, etc. that are radailable. Simpler, statistical estimates of response to environment
that include main parameter dependence (such as damping, average panel thickness, etc.) are more
appropriate at this stage.

Inspirations for SEA Two areas that served as "totgtiones'in early theoretical dev@pments of
SEA are the theory gbom acousticsandstatistical mechanics

Room acoustics deals systems of very many degrees of freedom (there may be over a million modes
of oscillation of a googized room in the audibledgquency range) and the interactions between such
systems (sound transmission through a wall is an example) using both modal and wave models. The
very large number of degrees of freedom is an advantage fromisticsthviewpoint- it tends to

diminish tre fluctuations in prediction of response.
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Statistical mechanics deals with the random motion of systems with either a few or very many
degrees of freedom. It is random motion of a very special type, which we may call "ntaximal
disordered.” In this statof vibration, all modes tend to have equal energy of vibration and to have
incoherent motion. The energy of the modes corresponds to system temperature. The state of equal
modal energy is spoken of as "equipartition of energy”. In SEA, we mostly ueguipartition

assumption for modes that resonate in the same frequency band, not for all modes.

Statistical mechanics, and heat transfer, teach us that thermal (random vibration) energy flows from
hotter to cooler systems, and that the rate of flow ipgmt@mnal to temperature (modal energy)
difference. This also applies to mechanical dynamical systems excited by broad band noise sources.
Narrow band sources are equivalent to broad band sources when systgyasaaee taken. This

result can be generséd, with proper care, to pure tone excitation.

Advantages and Limitationsf Statistical AnalysisThe statistical analysis allows for a much simp
ler description of the system, by modes or waves. In the former case, modal densitye avedal
dampirg, and averages of modal impedance to sources of excitation are required. A wavaatescrip
uses parameters such as mean free path, surface or volume absorption and general geometric
configuration.

The most obvious disadvantage of statistical approastibat they give statistical answers, with

some uncertainty. In very high order systems, this is not a great problem. Many of the systems we
apply SEA to, however, may not have enough modes in certain frequency bands to provide
predictions with high ceainty. We may attempt to calculate the mean response and also calculate the
confidence intervals of the prediction [2].

There are also difficulties in the psychology of statistical methods. A designer may predict the
structural response of for example bady panels, for which he has engineering drawings, to a
loading environment, for which he has operational data. Instead of using a deterministic calculation
he may get a "better" estimate if he represents the car body with a SEA model of medium size and
reduced complexity, using parameters like panel average thickness and total area!

This simplified statistical model may just as well represent his knowledge of the car body at its 100th
or 200th mode of vibration as it is by his drawings. Also, the arssinegets by SEA will be in a

form that is usable to him, with parameter dependencies that will allow him to interpret the effect of
major design changes on response levels. The uncertainties inherent in his SEA predictions may alsc
reflect the actual vations in response between individual cars that will be present in series
production.

1.2 Historical background

In 1959 Lyon calculated the power flow between two lightly coupled, lineanaese excited by
independent white noise sources. He foundttiapower flow was proportional to the difference in
uncoupled energies of the resonators and that it always flowed from the resonator of higher to lower
resonator energy. About the same time P W Smith found that the response of a resonator excited by
diffuse, broad band sound field reached a limit when the radiation damping of the resonator exceede
its internal damping.

Smith's result was surprising since many workers regarded an acoustic noise field simply as a source
of broad band random excitatioWhen a resonator, excited by a broad band noise, has its internal
damping reduced to zero, the response diverges, i.e., goes to infinity. Smith's limit was due to the
reaction of the sound field on the resonator, the radiation damping. This limit codsspaquality
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of the resonator energy and the average modal energy of the sound field. If the coupling is strong
comparedo internal damping, equipartition will result.

Lyon and Maidanik wrote the first paper that may be said to be a SEA publicdtibefigte the

name SEA was coined. Formulas for the interaction of a single mode of one system with many mode
of another were developed, and experimental studies of a bearm({fde/sysem) with a sound field
(multi-modal system) were reported. This weHowed the impaarnce of the basic SEA parameters

for response prediction: modal density, damping, andlo@ujoss factor.

The earliest application was to sowstducture interaction because it seemed "obvious" that SEA
would work best when a souffidld, with all of its many degrees of freedom, was inedl. Very
soon, however, applications were also made to strustwweture interactions.

The earliest work on structusgructure vibration transmission was concerned with electronic package
vibration. Aside from ships and aerospace vehicles, the most active uses of SEA have been in
building acoustics. A particular area has been the transmission diosbifrough structural
junctions. SEA was used miotstectuelbothe sound teansmission h e
in ships and | arge b dings. While being out
revival during the 1 60 s wi mety amoagaqdalifiede hi c | e s,
applications.

ui l
990

The calculations of regmse energies in the SEA subsystems are computationally Straigird,

involving the inverse of a webehaved and robust matrix of coupling loss factors. The number of
subsystems may become quite large, with large bookkeeping of information on daaipeyy

coupling loss factors, and mode counts. A number of computer programs have therefore been
developed to handle SEA calculations for ships, aerospace structures, and buildings, some of them
commercially available and quite advanced.
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2 Dynamic analyss of complex structures

One may roughly divide the dynamic analysis of structures after the required complexity of the
computational model, See Figure 1. It is obvious that most constructions and structures in our
industrialised world are complex and ARlesomogenous, e.g. buildings, ships, road Vekjcaerospace
structures and various appliances and machines. The greater degree wiergfiofethe product that
one strives for, including sound and vibration properties, the more rigorous analysis rae¢ghods
necessary. The computational methods available for-@booistic analysis and design of complex
systems are:

a) Discrete (lumped) masspringdamper models
b) Finite-element methods (FEM) or boundary element methods (BEM)
c) Statistical Energy Analysis (SBA

RIGID BODY
STAUCTURE SOLUTION

M
ANALYTICAL SOLUTION

l (NEWTON'S ZND LAWY
.3 i ! ! c
7 7]

ELASTIC BOOY
SIMPLE. HOMOGENEQUS

& ANALYTICAL SOLUTION
; (WAVE EQUATION)

COMPLEX. NON-HOMOGENEQUS

: e COMPUTER
, (FINITE ELEMENT MODELING)

1 ¢ MEASUREMENT OF DYNAMICS
‘ O {TRANSFER FUNCTIONS)

Figure 1. Simple classification of vibracoustic system models
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The structures may also be described and modelled, at least in parts, with experimental data, obtaine
mainly from

a) Experimental modal analysis (EMA)
b) Frequency response furatianalysis (e.g. FR&ubstructuring)

The finite element method can be illustrated roughly with Figure 2.

1. REPRESENT STRUCTURE BY COMBINATION OF SMALL ELEMENTS

.
s — - -
e

STRUCTURE

DN BN Y

4
PLATE ELEMENT
(6-DEGREES-OF-FREEDOM)

2. EQUATIONS OF MOTION ARE COMPUTER GENERATED FROM
PHYSICAL PROPERTIES OF THE STRUCTURE

My maz «|[X1 ()] [e1r 42 | [%(2) Kyg kaz - | [xq(t}} [f4(2)

ma - k2 (t) L xz(t) N k2 xa(th| [fa(t)
- " —t— TR S — ——
MASS MATRIX 'DAMPING MATRIX STIFFNESS MATRIX

INERTIAL FORCES DisslPATIVE FORCES ' RESTORING FORCES EXTERNAL
FORCES

Figure 2. Dynamic modelling with the finite element method (FEM).

Experimental modal ahgis means that the modal parameters (eigenfregquergeriuncions,
damping) are derived from measured transfer functions, see Figure 3. Advantages and disadvantage
of the FEM method compared to experimental modal analysis are presented in Table 1. This table is

also of interest when FEM and SEA ammpared.
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1. Transfer function measurements. |3, Curve fitting results in modal parameters
with artificial excitation

Systempolesl , (eigenfrequencyv,,
modaldampingfactorz,)

Modal vectors{y}, (residue}

- L

A 4. Animation of modal vectors
xIF (modeshapes

Figure 3. Principal work flow for experimental modal analysis (EMA).

Table 1 Advantages and disadvantages of finite element analysis

Advantages Disadvantages
The model can be "built" and used before § FEM models can be very difficult and
prototype hardware is available expensive to "build".
The model can predict a structure's behavi{ Modelling is generally done by a skilled
under real world dynamic operating dynamicist because of the complexities of {
conditions available FEM codg

An engineer can analytically modify the Models can be expensive to run, dependin
structure (via the FEM model) much cheap| on the size of the model. They may also
faster and easier than he can change actug require a large computer for op&pn
hardware

A model can be, and indeed is often
inaccurate

Many implementations cause a user to wai
hours before either plotted or printed result
are available

Systems have been developed for modelling with combined-&&ddilations and expeniertal

modal analysis (Hybrid modelling), See Figure 4 [5]. This facilitates effectivelaiion of the

impact of modifications to a prototype, provided that the Fabtel can be correlated and updated
with the experimental modal model. Updated B&d hybrid modls can of course not be used in

very early design phases, such as concept design. Also, only a limited number of vibrational modes
can be modelled reliably in this way.
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Elastic connections

Nastran FEM models

Systan elements ‘\\ f 4

|

Constraint equations

)

Data from test Rigid body components

Figure 4. Hybrid modelling example for a car rear axle [5]

Complex structuresra characterised by the following properties:

- Complex geometry for the parts of the structure

- Uncertain dynamic properties and boundary conditions at joints

- Uncertain material properties, many different materials

- Small or moderate damping (very hard tegict)

- Numerous resonances at frequencies some octave above the fundamental resonance frequency

Statistical calculation methods may be as reliable (or unreliable) as detailed deterministic numerical
methods (e.g. FEM), see the following chapter. Stesisthethods for calculation of the energy
distribution will be simpler and smaller, and therefore also cheaper to apply than e.g. FEM when the
number of modes that determine the response is large, or at early design stages when details of the
structures a undecided. Experimental, detailed modal analysis will also run into difficulties when
the modal density and modal overlap becomes higher:

"Modal density describes the frequency proximity of adjacent modes, and thus their susceptibility to
precise meas@ment. At low density an experimental modal analysis is limited by the frequency
resolution of the analysis system. At high density, a structure's dynamics defy modal decomposition |
signal processing techniques alone; "zoom" processing proves unakleai@ate overlapping modal
bandwidths and spatial decomposition must be employed. Between these extremes, the analysis is
limited by the sophistication and precision of the modal parameter identification algorithms
employed.”

From "Modal Density a Limiting Factor in Analysis" by George F Lang, Fox Technology Corporation.

Thinwal | ed, stiffened structurke winlclr esifgtgan nh an
rather small frequency interval b6  wllgratesthi$l oc al
where one gets so many modes for large ship hulls at around 50 Hz that a dynamic solution of a FE
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model for e.g. a complete aft hull and superstructure will have an unrealistically large extent and
produce results with unreasonable ardless detail.

Number of modes, N
[y o N
o, o o
1 ] [

[EY
o
1

Frequency (log scale)

Figure 5. Principal frequency dependence of the cumulated number of vibration modes for a ship hull

3.

It is not quite obvious that one should strive as much as possible for detail in the calculation model. A
citation from Maidanik {977), one of the persons behind the early SEAIdpreent is interesting

[6]:

OSEA is not alone; experiences in other areas
chosen sacrifices of details often alleviate difficulties associated witlufating the behavior of

models of complex systems. Indeed, excess information can, and usually does, act like noise! This
includes not only details that do not admit to practical definitions; it includes even those that can be
so defined but are, by andrtge, irrelevant to the phenomena that are manifested dominantly in the
behavior of interest. On the other hand, one must ensure that the loss of details in the descriptions of
the behavior of the models would not be too severe to render them insignifidsstriminate

sacrifices of details may suppress the very phenomena that contribute to the behavior of the
complexes one desires to describe. To prevent such suppressions, and yet to establish models that «
be formulated, is a skill that mustbeacgqust t o make SEA effective. o

Proper approximations rely on knowledge, skill and experience. SEA is a tool foaciustic

analysis of complex systems. The tool works well in the hands of a skilled and experienced analyst.
The skill refers mainly to suffient physical understanding of the structural behaviour and the
problem at hand.
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3 Variability and predictability of vibro -acoustic systems

Significant variations in vibr@cousic transfer prperties are obtained between widual pralucts
thatare produced to be identical. Variations &-10 dB for narrowband tranter functions are usual
and typical in serial pauction of road vehicles, aircraft, ships, appliances etc. at medium and higher
frequencies.

Some papers have been publishednewariation of transfer function characteristics between e.g.

road vehicles [7] and engines [8] with naraily identical design. Kompella et. al. [7] pented

measured frequency manse functions for a large number of identical vielicThe FRFs stw more
random behaviour and scatter as the frequency increases, see Figure 6. By assumingitity tearia

be due to difrmascufufriicnige mtuamanw A, t he -modelsmayf | a
seem to be justified for pdéction of dyramic properties, even at frequencies where many modes
contribute sigificanty to the total regonse.

162 T —— ¥ T T T 7 Y

=TT

16 g

wel - §
o BT

Mag. of FRF

104f )

!
102 kf

ik
0

Figure 6. Magnitudes of the 99 structutorne FRFs for the RODEOSs for the driver microphone [7].

A good summary ofite fundamental limiting factors for deterministic modelling and analysis was
presented in a recent SEA review paper by Fahy [9]. Apart from the fact that BE-models
become very large at higher frequency due to the finer meshingeeguits and thahe modelling
effort is increasing substantially due to more attention to geometritzall, diee following
fundamental limits for prediction of the response in detail exist:

fUncertainty about precise dynamic peaties Sersitivity of eigenfreqencies and phase
regorse to changes in boundary conditions, thess and darping distribution etc. increases
with mode order.

1 Modal summationContributions from an increasing number of modes are added at each
frequency as frequency and/or dantpincreases.

1 Uncertain dynamic properties of joint§he dynamic force transmission properties of joints
are not very well defined. In addition, dynamic pedpes of most joints between structural
components are especially uncertain at higher fregeenc
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1 Uncertain material propertiedJse of alloys, polsners and composite materials makes basic
material prperties considerably harder to predict for modelling purposes. In addition these
material properties will vary much more due to temperasiatic loads etc.

1 Uncertain modal damping estimatidrorced regonse predition needs damping to be
estimated. For detaid deterministic prediction, either the correct spatial damping distribution
or the correct estimates for individual modal dargghas to be applied.

One should therefore treat pesise prediton for multrmodal systems as a prdiiléstic prodem.
High-frequency regsonse of a population of nominally sifar products of which the individual
members differ slightly in mey details may be described by asembleaverage behaviour and a
staistical estimation of the distribution of r@snses around this average.

3.1 Theory

The statistics of mukimodal systems was first derived for room acoustics, see e.g., [10].alsbas
been stdied during the SEA develagent [11]. Schréder demed some fundamental results already in
1954 [10].

Consider a system where the response at each point and frequency is determined by the sum of a
sufficient nunber of males with randonphase, and where no indilual mode is domiating the sum.
This will be the case in many dynamical systems above a certain frequency.

Define a logarithmic response functinas [10]

zzln% 1)

wherex is the responsia the system at a certain point and frequency, xaigithe spatial or
frequency average value xf

The standard deviation af s = JZ2 -7 can be caldated if the probability distribution function
W(2) is krown. The real and imaginary parts of the complex responsédorare subject to Gaussian
distribution

W(Re(X))= o @ Rek/ 2Rek ] ()
2pRef ¥
and
— 1 _ Im(x)2/2Im(x)?
W(m(¥) = ———¢ (3
2pIm(x)*

where Re(x ¥ = Im(xY .

The Gaussian distribution il when the response is given as the sum of several complex
independent (modal) vectors, of which no one is dominating. This type of respomadisumnis
illustrated in Figure 7. Figure 8 illustrates a frequency response function with oneatiagi
component, e.g., a dominating mode or the direct wave field of a strongly damped system. For this
case the Gaussian distribution of real and imaginary parts does not apply.
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Im{H}

/

\/ R;:{H}

Figure 7.The complex FRF and its modal compos, for one frequency. No mode dominates.

Im{H}

Re{H}

Figure 8. The complex FRF and its modal compots, when one component is dominating.

The probability distribution function faz, W(z) can now be derived as

W(2 =exp(z - &) (4)
with zfrom Equation (1).

The standard deviatios(z) for this distribution is [10]

s(2=NZ 7 E28 (Nepers) (5)

This standard deviation correspondste 5.57 dB This is a very interesting, generic result!
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3.2 Generic vibro-acoustic models

The theoretical variance given above wasived from a general summation of complextoec It
should be valid for any dynamic $ge for which the frguency response function can be expressed
as such a sum. For any system with N wibral modes, the FRF between two points can Ipeesx
sed as (modal superposition)

Hoox, =YW 4wl J0)O[(x,)

F(x,w) M o, w@d+j2 3 - 2 (6)

wherex is the spatial vectok = [Xx,y,z], index e refers to exciti@n point, A/ is total masswis
excitation frequency arfl is the eigenfunction of mode

A generic multimodal dynamic system can be represented by a sum of modes according to Equation
(6), where the eigenfrequencies may be distributedxXample as

w =200p Og{ 1 )
Eigenfunctions at excitation and response points are random numbers bdhagdri.

Random shifts in individual eigéequencies and modal damping will simulate the influence of
material and geoatric parameter variations. The eigenfrequencies are shifted as follows:

W=y @ ) (8)

where o is the unshifted eigenfrequenais the amptude of the random variation akbandUj;
are ralom numbers with normal digbution (m=0,s =1).

Local variations of thickness, mass, badany conditions etc. results in individual shifteigen
frequency for each mode (Equ. 8), where eagls shited byeJ;. An ensemble of plates is obtained
by using different sets of samples.

The modal damping has the same nominal vag for all modes. The uncertainty in dpimg is
modeled by an exponéial normal distribution, see equation (8); has a normal digbution with a
mean value of 0 and a standard deviation of 1. An exponentmmbhdistribdion is chosen as it
provides a realistic dgpmg distribution for the modes.

X = % 1 ©)

Figure 9 shows the difference in FRF that is obtained for two samples of the generic model.

Themodal overlap factors defined as
_P
MOF —En( fyn f (10)

where n(f)  is the average moddensity (modes/Hz)
h the loss factor at frequenéy
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FRF, dB

0 20 40 60 80 100 120 140 160 180 200
Frequency, Hz

— Sample 1
* Sample 2

Figure 9. FRFs for the generic modal expansion model with5%. Standard deviations: 3% for
eigerfrequercties, 30% for logarithm of the modal dpimg.

MOF is larger than 1 fdr> 60 Hz in ths example case. Schroder's formulation idiapple when
the modal overlap factor is larger than abodt 2Vhen the modes have approximately equal-exci
tation, no single mode dominates the response in that case and the responsuirseddigra sunof
several modes with different phase and amplitude (interference).

The complex vector contributions from individual modes are shown for 150 Hz in Figure 10 aand b
for the two samples. The large differences in phase and amplitude of modal contsbatas that
lead to the 31 dB FRF difference in Figure 9 are obvious.

Polar diagram, Modal contrib at 150 Hz

90 90
120 60 120 60

150 1 30 150 30

180

10 »-100510° O 180 ——+— 736016616

210 T 330 210 330

240 300 240 300
270 270
* Sample 1 *+ Sample 2

Figure 10. Modal contributions at 150 Hz for the two samples from the generic modal expansion
model.

A thin rectangular plate exemplifies a real mutibdal component. The p&ahas simply supported
boundaries and is excited at one point



TA |lI: Statistical Energy Analysis (SEA) 16

For the plate the FRFs are given by

v, w)  Ajws F(00f(x,)

s ' (11)
F(X.,,w) MhA = i]ﬁ/@_+ j2 i]_ Y- 2
j=
where
£ (X) = sin? Sinl_[y 12

X y

I, ly are the lengths of the sides of the plates the area oftte platehis the plate thickness;y is
the critical damping ratio for modg.

The eigenfrequencyy; for modeij is calcuated using the following equation

[ EW  Spioapo
“Nze ngl, °F, 8 -

The excitation and response positions on the plate are the same for all pldés sdifmpugh arbig-
rily chosen. This means that the same ppiint frequency response function is phok for all plate
samples.

3.3 Numeric examples for local parameter uncertainties

Manufacturing processes like rolling, stamping,diug and moulohg etc. will introduce localised
variaions in geometry, thickness, ps&resses and possibly also material parameters. These local
effects will shift indvidual eigenfrequencies differently depending on how the mode shapes relate to
the localised vari#ons of the structure. Other local menlsans that introduce shifts in individual

mode eigenfrequencies are bdary condition variations. These may be due to jointrpater
fluctuations as well as variability of coaded parts. All these can bepresented by random shifts of
individual eigenfrequency around the nominal value.

Variations in individual modal damping factors, due to differences in boundary conditions, material
and joint damping distoution, sound radiation, etc. can be quitgdaiScatter in these factors will
cause additional vability of the damping for individual modes. This means that the relations
between modal damping fiacs will also vary between different samples of a plate. This is modelled
as randomly distributedanping betveen the individual modes.

Damping has a significant influence on the FRF, since it will change the amplitudes of the complex
mode cotribution vectors. Random variation in daimg for individual modes will cause largely
varying transfefunctions.

When the individual eigenfrequencies scatter randomly around theagevealues, the trafes
functions will get very digersed. This sensitivity to rather small eiff@guency shifts is explained by
the large 180FRF phase angle junaround the natural frequency of the sirdégreeof-freedom
system that represents each mode.

We expect a combined scatter of damping and natucpldrecies in real structures, and the total
impact of these variations on the variance in the FRFwid superposition of the respective effects.
The necessary variation of the input parameters of the rectangular plate to get randomly varying FRF
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for modal overlap larger than2is, e.g., a 2% eigéequency variation combined with a 20% varia
tion in the logarithm of damping for the studied plate, see Figure 11.

The result obtained, using the combined variations of individual, modal eigenfrequencies and damp

ing shows a good qualitative agreement with the reportedureebresults for complete carcom
pare Figure 11 with Figure 6.
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Figure 11.a) FRFs for combined random variations of eigenfrequencies and modplrdar)
Variation of spatial average velocity level (proportional to the kenergy) beteen different
samples of the plate. Standard deviations: 2% for eigenfrequencies and 20% for the logarithm of
damping factor.

When energy methods (SEA) are used, spatial averagerses for the subsystems areccidted.

As shown abve, detailed FRF estimation is of a limited picad value, since quite small input para
meter urertainties will lead to low precision in the prediction anyway as soon as the modal overlap is
significant. The spatial average energy response is egexfluctuate much less than the FRFs for
corresponding variations in eigenfrequency and modal damping, see Figure 11.b.

There is the same moderate dispersion between samples as for the FRFs at low frequencies. It is me
ningful to predict responsdrom a detailed deterministic model in thiginency range, since it will

reveal more detailed information about the structural response than a statistical energy model. How
ever, at frequencies where modal overlap is figant, the energy model piiets the aveage beha

viour equally well.

When a number of simple structural componentsggstems) are corected variations in the match

ing of the eigenfrequencies of local modes in the different subsystems eventually will make the FRFs
betveen wints on different subsystems to scatter more than FRFs between points on the component
structures. The energy flow model developed by Fred6 [12] was used for two connected plates ina L
configuration as illustrated in Figure 12.

The result of combinedariations of individual modal eigenfrequency and damping, quoreting to

the result shown in Figure 11a for the simple plate, is shown in Figure 13a. The FRFs between an ar
bitrary point on plate 1 and a point on plate 2 is shown. The standard alewetine frequency range

with significant modal overlap reaches the sartedi8 value as for the single plate. The chlted
response energy level in plate 2 witlciégation in plate 1, corresponding to the result shown inréig

11b for the singl@late, is given in Figure 13b. The same response energy level has also balen calc
ted with SEA. The SEA calculated result has been included in Figure 13b for comparison. As can be
seen, the agreement with the exact analytical result is quite good.
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Figure 12.The L-configuration of two simply supped plaes used in the analytical model by Fredo
[13].
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Figure 13.a) Variation of FRF levels bewen points on two selstems, calculated for theplate.
b) Variation of spatial average velocity level in the receiving plate of {pkate. Corbined local pa
rameter variations. Standard deviations: 2% for eigequencies and 20% for logarithnfi modal
damping.

So, the reliability of deterministic response prediction in road vehicles, aircraft, spacecraft etc. at me
dium and high frequency is not primarily detened by the size or the geometricaladeof a FEmo-

del or even the naeling skill of the anlyst. The limit is set by input pamgeter accuracy tpiire-

ments since small variations in eigenfrequency and dampingliefdnal modes will produce large

FRF scatter due to overlapping modes. Updating of the FEIB#e| againshardware will not redu

ce this random error. The needed input parameter accuracy will often exceed reasonable production
tolerances, especially when polgr materials and modern assembly téghes are used. Additional

cost due to tighter tolerances ahé correponding QA-procedures can only be justified if itskdts

in sufficient additional functionality or customer sédigion.



TA |lI: Statistical Energy Analysis (SEA) 19

4 Overview of general SEA procedures.

The basic theory and equations of SEA can be found in e.g. [2], [13] orAlstjort review is given
here of how SEA calculations are made. It will give a basic understanding aboutrimys can
cepts of SEA fit together. The SEA prediction procedure can beedivito the four following steps:

1) Modelling of the dynamisystem into sufystems and connections (junctions).
2) Determination of SEAvarameters for the ndel

3) Calculation of energy distribution between subsystems

4) Calculation of average response levels for subsystems

4.1 Model Development

This is the most dearding and important part of the dysis. Unfortunately, computer pgaams can
not yet replace the physical kngdge and expegnce needed from the analyst in creation of valid
SEA models. A good computer program can do most of the work withhibe sieps. Careful expe
mental verification is also quite essahwhen SEA is applied to new mtact categories, in order to
establish typical errors and limits of applicability for thelgsia. Nothing really substitutes the per
sonal appication expeience of a SEA user.

SEA is used to calculate the flow and storage of vibrational energy in decqropiltup sysem with
both structural and acatits conponents (avibro-acoustic system)rhe energy storage ebents are
called subsyems, and should be parts of thetegs with similar vibrational mies.These modes are
usually of the same type (flexural, torsional, acoustical etc.) that exist in some section dfetime sys
(an acoustic volume, a beam, a bulkhead etc.) separatescoytihuities from the rest of the struc
ture.Sulsystems are often reasonably easy to identify also in complexamieal or acougcal sys
tems.

Only the resonant vibratory energy of the sygiems is involved in the energy balancewations.
Vibratory energy tramaission via norresonant paths, e g the mdaw sound tramaission behaviour
of a panel below the critical coincidenceduency, must be included agpaate coufing elements in
the SEA model. The response levels of vdalinped subsystems will be ungestimated since nen
resonant rggonse is esluded.

Maidanik [16], [17] has suggested a SExmulation where nomesonant field contributions are-in
cluded. It will however increase the complexity of practical modgliinless dlimentional geome

tries can be imported directly from mechanical design (CAD) systems. Also the assumption of con
servative coupling between subsystems may be dropped with that formulation.

In selecting the modal groups, we are concernedlibsitmeet the criteria of similarity and

significance:

1 Similarity means that we expect the modes of a group to have nearly equal excitation by-the sour
ces, coupling to modes of other subsystems, and damping. If these criteria are met, they will also
havenearly equal energy of vibratiofequipatition of energy”, and the concept of sulisys
modal energy can be used.

1 Significancemeans that they play an important role in the transmission, dissipation, or storage of
energy. Inclusion of an "insignifamt" modal group will not cause errors in the calculations, but
may needlesslgomplicate the analysis. In computerised calculations, such inclusions are of less
concern thathey might be in hand calculations.
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The subsystems are finite linear elastiadtires or acoustic cavities, described by thecouped
natural modes and dissipativedes.Energy is dissipated by system damping, and transferred bet
ween the subsystenBy using a number of fundamental asstions, it is possible to extendeh

power flow analysis of a pair of oscillators to a pair of oscillator sets (subsystems), see Figure 14.

Subsystem 1 Subsystem 2 Subsystem 1 Subsystem 2

a) Uncoupled (Blocked) b) Coupled (mode pair interaction

Figure 14. Coupling between muitnodal syeems. The energy flow between the subsystems can be
modelled as a s@pposition of contributions between individual modes of the blocked subsystems.

The assumptions are:

the oscillators of set 1 aveeakly coupledo the oscillators of set 2

all generalizd modal forces must be uncdated

natural frequencies are uniformly probable over a frequency intewal
oscillators in one set hawegud energieqdequipartition of energy)

total subsystem energy is the sum of the energies of resonant modes only

=A =4 =4 -4 -4

Weak coupling does not necessarily mean that the connectivadresubsystems shall be plogally

weak. Weak couping is achieved when the power transmitted out of a subsystem into any connected
sulsygem is much less than the power dissipated by the transmitting subsystem. High internal loss
factors and high waveftection coefficients at junctiongssociated with large wave impedance
discortinuities favor this.

The fundamental SEA hypothesis will then be

P, = abgab(En,i En,) W#] N (B, ﬁj) (14)
where E j  is the average modal energy (= energy/mode) of subsystem
g,, Is the oscillatooscillator coupling coefficient

The energy flow between two subsystems may also be expressed as
P, =wrlf) fOD[H), B (14a)

where E, 1, E»are the modal energies (energy/mode) of theytdms
n, is modal density for subsysn 1

hy, is the coupling loss factor
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This shows that the energy will always flow from subsystems with the highexgevenodal energy
to subsystems with lower modal energy. This is the basicliogupqudion in the classical SEA
calculations.

The following "reciprocity" relation for the coupling loss factors follows from applying the basic SEA
assumptions

nihij =n {7 (15)
Excitation by noise and vibration sourcedl supply vibratory power to some of the ssystems. The

energy from these sources ishett dissipated by mechanical daing in the subystems, or trars
ferred between them (coupling losses).

The coufing, excitdion and dissipation for two seby st ems may be il |l ust
diagram shown as in Figure 15.

P 1,in P 2.in

Subsystem 1 Subsystem 2
P12
B, tot > E> tot
N1 N,
P 1,diss P2 diss

Figure 15.Block diagram for a twesubsystem SEA model.

What do these subsystems represent? Obviously they represent an entire ensembtares stiitit

the same main geometry parameters (volume, area, thickness etc) and material parameters, |
undefined details about shape, boundary conditions etc. This can be illustrated by Figure 16, showin
an ensemble of plates that will be modelled asbaystem with exactly the same parameters!
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ENSEMBLE

All represented by th
same plate subsyste
E,r Sandtare equd

Figure 16. Example of an ensemble of plates with varying shape, represented by the same SE
subsystem (this is the S in SEA!)

4.2 Establishing the SEA Parameters

The SEA parameters to be determined forsthiesystems and junctions are the following:
1) Input powers\; to thei-th sulsygem
2) Modal densities; for thei-th subsystem

3) Internal loss factors, for thei-th subsysem.
4) Coupling loss factorgj between thé-th and thg-th subsystems

Input power definition. The input power to sidydsems may either be specified directly or derived
from a dynamic load quantity when subsystem pa&ters are known. It may be the input power from

a pointforce acting on a plate or from an acoustic reverberant field acting on a plate. More details are
presented in the examples later on.

Modal density. The energies determined by SEA areraged over a frequency band. The number of

modes in that band witletermine the variance to be obtained in tisallteng frequency averaged
energy. The number of resant modes can be estimated from the modal densityediefis

n(f)= % (modes/Hz (16)
Where DN is the nunber of modes in the frequenbgndDf .

The modal density is mostly determined theoretically, and tables of asymptotic formulas for basic
structures are given for example in [2] or [14].

The modal density of an acoustic cavity &mother &im subsystem) is given as

n(f)= '/ff:(v.. e P 17)
p@; & 4pc,@ 8¢
where V is the volume
A is the surrounding area
P is the total perimeter of all surrounding surfaces
Cp is the phase speed and

Cy is the group speed
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The modal densitgf a plate (or another-@m subsystem) is, with the same notations,

n(f)= AP (18)
CD Qg CQ

and the modal density for the subsystems of a beam or rod (or another 1 dim subsystem) is

n( f) :ZCE (19)

9

The malal demsities (average number of whes/Hz or modes/rad) for ssystems, are usually eal
culated by the SEA computer programs directly after input or update of subsystem data.

Dissipative loss factorsThe internal, dissipative energy losses due topdagnetc. for each subsys
tem is described by the loss factor, defined as

h = __idiss (20)
WE,
where P, . is the dissipated power in subsystem
Ej is the stored vibrational energy in syistemi

They repreent the riative amount of dissipative losses compared to the stored elastic energy in each
sutsydgem. The data has to be supplied for eaclsygstbm as empcal data, or as predicted loss
factors of certain daped structures [15].

Coupling lossfactors. The power flow into connected ssystems can be defined analogously to
Equ. (17) by a codmg loss factor (CLF)’?ij. Formally this means that

o=t (21)
ij WEI

where P is the power flowing from sidygemi to subsystem
Ej is the stored total energy in subsystiemhenEj =0.

Coupling loss factors are related to other quantities of junctions [2]. The CLF:s are easily derivec
from thesound transmission los§$TL)for partitions that separate acoustic ti@g. For acoustic
structural coupling, CLF:s may be derived from tlagliation efficiency or radiation resistance
CLF:s for junctions between plalike subsystems relate wave transmission coefficientsr the
junction. For structural junctions that define a point connection, the CLF may be derived from the
mechanical mobilitiesf the connected subsystems.

The coupling loss fdors (CLF:s) for different energy tramgssion paths can be calculateor fa
number of junton types from published formulae [2], [13], [14].
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4.3 Calculation of the energy distribution.

A set of simultaneous energy balance ¢igna is used to calculate the resulting stationarygner
levels of each subsystem. Response &ewelengneeing quantities (pressure, stress, &eedion,
etc.) can then be easily calculated from these energies, see the next section.

When the SEAparameters for all subsystems and fiors have been determined, the set of energy
bdance equions will be completely defined. This may be written as the following matrix equation

é,nihnot -nA, e N f g B, O0W.e
e u ~ | |
LS-n n I
Df @2 11 2 ot ' > R %HZ {J H 2 (22)
é A
EMNy WhR - Ny e d B! yWini

or in matrix notation

Df o[A] {E)} {W (22a)

The matrix A] is real, symmetric and positive fdete of size NxN where N is the number of sub
systems. By appropriate numbering of sygiems, the matrix may be keptrsfgcanty barded,
which improves the callation speed and extends the limit of maximum bemof sulystems in the
calculations.

4.4 Calculation of average response levels.

Total erergies in each frequency band are obtained bytiptyihg the calculated modal energyéds

with the calculated number of mies in the band. From these total energies, average response
guantities aredetermined. For example, the relationship between the total energy of an acoustic
subsystem (cavity) and the spatial average sound pressure is

- p22> Y 23)
rc

and the relationship between total energy in a structural subsgsigrine spatial average vibration
velocity is

E=M <v2> (24)

where M is the total mass of the substructure.
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5 SEA application examples

Statistical energy analysis has been used for a long time to predict noise anolnvira:

lems in aerospaeeshipbuilding and building applications. Lyon, Eichler, Smith and

Scharton [18]21] investigated structurlborne sound tramsission and coupling between
acoustic and bending wave f iTheénethodiwasusethe 196
early to predict acoustically induced vibrations of electronic equipment in sattelites and
warheads [22], [23]. See also Figure 17. Also calculation of sound insulation of electronic

boxes for sensitive equipment was developed duriegtl 96 06 s [ 24] .
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Figure 17. Example of early SEA applications in aerospace.

In building acoustics, Kihlman [25] derived the transmission coefficients for a junction bet
ween four plates, taking all wavetypes into account, which was used to estimateséne

flow across such junctions. The method used is closely related to SEA, although SEA termi
nology was not used explicitly. The use of SEA for prediction of sound transmission loss of
single and double walls was presented early in a series of pidsiecaly Crocker et.al. [26],

[27], [28].

Several early and fundamental studies were carried out on vibration propagation prediction in
simple coupled structures using SEA -during
ger projects involving predion of internal vibration levels of aircraft [29],[30] and skiel

[31], [32] electronics. Figure 18 shows a typical SEA model for such a structure, the number

of subsystems was still limited to about 1.

The first publishes ship application of SEAas 1969 [33]. SEA formalism was used to
diagnose structurborne transmission paths from modal energy relations between
subsystems. This is illustrated in Figure 19. The flow of energy is from subsystems with
higher modal energy to systems with lower.
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Figure 19. First ship application of SEA. Transmission path diagnosis from modal energies.

The use of large SEA models (several hundred subsystems) was developed and tested during
the 19700s f or pbomatiansmissiomin ships arsd targelbuitdiogs, see e.g.
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[34], [35], [36] and [37], [38]. Examples of models are shown in Figures 20 and 21. The com
plexity of these models could vary, depending on which wave typearh included.

Figure 20.

These SEA models have proved to be quite useful, with acceptable engineering accuracy for
frequencies over approximately 100 Hz for ships and approximately 200 Hz for concrete buil
dings. These studies also indicate thatahtual number of resonant modes in each subsystem

does not have to be large when a large number of subsystems are involved.

A renewed and stronger interest to use SEA for noise and vibration prediction has appeared
duu i ng the | ater yYbarseofy sheoh§806ps6i mi sm cr
FEM as a universal tool for computation of dynamic response also iradogstic systems

with a very large number of modes has been replaced by a more realistic attitude. Mere peop

le realise thithe limitations of reasonable use of FEM/BEM are not primarily set by compu

ter resources, see e.g. chapter 3 of these notes. It is not hard to consider FEM and SEA as
comd ementary tools, where FEM is outsdandi nc¢

~

and SEA can be wused for estimations of il o



